If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x-2x^2-6=0
a = -2; b = 7; c = -6;
Δ = b2-4ac
Δ = 72-4·(-2)·(-6)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-1}{2*-2}=\frac{-8}{-4} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+1}{2*-2}=\frac{-6}{-4} =1+1/2 $
| 8x+6=2x+7 | | 31x=26x+135 | | 31x=29x+135 | | (3x-5)+(2x+25)=180 | | 5a-12=7a+12 | | 2y-16=110 | | x/4/7=8 | | 2x(x+30)+(x+10)=1375 | | n^2+n-1220=0 | | 2x+7/5-3+11/2=2x+8/3-5 | | 15=20t+5t^2 | | x-10+4=1 | | 1.5x2.0=3 | | 3x+9=7x+33 | | x-3=√(17+x) | | x+2*2=13 | | -8-5v+6v=v-5+v | | 47x+27=57 | | 9x^2-5=11 | | X2+4x+4=24 | | 6t+4/3=8/3 | | 2x-17=-2 | | 8m/3+6=4 | | 20x+15=-5 | | y=√64 | | k=((-1/2)*3k)+7 | | √y=64 | | 3+2x/3=x-15 | | 46=4+2x | | x(x+4)+(2x-6)=50 | | 4∑n^2/2n=0 | | 3/5x=12/5 |